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is similar to that of other typical "organic" cations and, for ex­
ample, the Gibbs free energy difference between water and ace-
tonitrile, AGtr = -9.8 kJ mol"1, of Ag(2,2,2)C104 is comparable 
to that of Et4NClO4 (AG„ = -4.2 kJ mol'1)-2 It is also noticeable 
that there is a minimum in AGtr for Ag(2,2,2)C104 around xAN 

= 0.6, which presumably can be attributed to a slight preferential 
hydration of ClO4" as mentioned for AGu(AgClO4), as the increase 

in AGtr(Ag(2,2,2)C104) on going from xAN = 0.5 to pure aceto-
nitrile is as large as that for AgClO4. An extension of these studies 
to other cations and cryptands may lead to a more detailed ex­
planation of the behavior of cryptates in solution. 

Registry No. Ag(2,2,2)C104, 80434-44-2; KClO4, 7778-74-7; AgClO4, 
7783-93-9; (2,2,2), 23978-09-8. 

Kinetic and Thermodynamic Control in Group Transfer 
Reactions 

Joseph R. Murdoch* and Douglas E. Magnoli 

Contribution from the Department of Chemistry, University of California, Los Angeles, 
California 90024. Received April 10, 1980 

Abstract: The concept of kinetic and thermodynamic control is basic to an understanding of chemical reactivity. In the present 
paper, a theory of nuclear substitution, developed in other work, is used to show that under certain conditions kinetic and 
thermodynamic factors can be rigorously separated for group transfer reactions (A-B + C -* A + B-C). These factors can 
be evaluated from AE° for the overall reaction and from the barriers of two related "identity" reactions (A-B + A -* A + 
B-A and C-B + C -* C + B-C). For large values of A£°, no rigorous separation is yet possible. However, using the virial 
theorem and the fact that the kinetic energy can be decomposed into orbital contributions, it is shown for proton-transfer reactions 
that the total energy expression at stationary points on the A-H-C potential surface (e.g., reactants, transition states, products) 
can be divided into two terms. In the limit of reactants (or products), one term reduces to the total energy of A-H (or A) 
and the other term corresponds to the total energy of C (or H-C). At other stationary points (viz., a transition state), it is 
shown that the two terms have altered values, but no new terms are necessary to describe the interaction between the reacting 
molecules. This convenient property is used to derive a simple empirical equation for the barrier of a group transfer reaction 
which takes the interplay of kinetic and thermodynamic factors into account. The general equation allows AE* to approach 
A£° for sufficiently large, positive values of AE° (either finite or infinite), and special cases of the general expression can 
account for the SCF barriers of certain proton-transfer reactions to within 0.4 kcal over a range for AE° of 108 kcal. 

The fact that rates and equilibria for chemical reactions often 
respond in similar fashion to changes in substituents has attracted 
considerable attention over the years. In the past, this connection 
has been approached from many different angles, and before 
introducing a new treatment, it would be instructive to examine 
some common elements which have emerged. 

I. Introduction 

A. Thermodynamic Factor—The Bronsted Relationship. In 
a large number of cases, a change in substituent which makes the 
reaction less favorable thermodynamically will also make the 
reaction proceed to equilibrium at a slower rate. This idea has 
a certain appeal and forms the basis for extensive theoretical and 
experimental work by a number of workers, including Bronsted,1 

Bell,2 Evans and Polanyi,3 Hammond,4 Leffler,5 Eigen,6 and many 
others.7 

At the transition state, it is commonly expected that the 
structural changes connecting reactants and products are at some 
intermediate stage of completion. Leffler5 showed how this idea 

(1) J. N. Bronsted and K. J. Pedersen, Z. Phys. Chem. (Leipzig), 108, 185 
(1924). 

(2) R. P. Bell, Proc. R. Soc. London, Ser. A, 154, 414 (1936). 
(3) (a) M. G. Evans and M. Polanyi, Trans. Faraday Soc, 32, 1333 

(1936); (b) ibid., 34, 11 (1938). (c) J. Horiutti and M. Polanyi, Ada 
Physicochim. URSS, 2, 505 (1935). 

(4) G. S. Hammond, J. Am. Chem. Soc, 77, 334 (1955). 
(5) J. E. Leffler, Science (Washington, D.C.), 117, 340 (1953). 
(6) M. Eigen, Angew. Chem., Int. Ed. Engl, 3, 1 (1964). 
(7) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic 

Reactions"; Wiley, New York, 1963. 

could lead to the quantitative form of Bronsted's catalysis law 

log k = alog K^ + C (1) 

The central theme of Leffler's proposal is that if a substituent 
change destabilizes the products relative to the reactants, then 
some of this destabilization should carry over into the transition 
state since the transition state bears a partial, structural resem­
blance to the products. One implication of this hypothesis is that 
as a transition state approaches the products in structure, the 
destabilization of the transition state should approach the de-
stabilization of the products, and a should approach unity.7 The 
parameter a is regarded as a measure of the relative sensitivities 
of the transition state and the products to structural perturba­
tions.6,7 Equation 1 provides quantitative substance to the 
prevalent belief that the barrier of a reaction is dependent, in part, 
on the thermodynamics of the reaction. This dependence could 
be thought of as the thermodynamic component of the barrier. 

B. Kinetic Factor. (1) Kinetic Acidity vs. Thermodynamic 
Acidity. Even though relationships such as the Bronsted equation 
(eq 1) tend to focus attention on the thermodynamic factor, it 
is widely recognized that other considerations are important as 
well. A simple example involves the deprotonation of a 2-
methylcyclohexanone derivative by trityllithium.8 Proton ab­
straction from the less hindered side is faster and results in initial 
formation of II, which slowly rearranges to the more stable enolate 
I. Similar "paradoxes" of the less stable product forming faster 
than the more stable product are well-known.9 

(8) B. J. L. Huff, F. N. Tuller, and D. Caine, J. Org. Chem., 34, 3070 
(1969). 
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f -Bu ' - B u / -Bu 

kinetic product 14% 86% 
thermodynamic product 89% 11% 

(2) Deprotonation of Nitroalkanes. A second type of example 
which drew attention to this problem involves the base-catalyzed 
deprotonation of nitroalkanes. These reactions are unusual in that 
values of a greater than one (e.g., 1.7-1.9) or less than zero have 
been observed.10 In one case the transition state is apparently 
more productlike than the products (a > 1) and in the other, the 
transition state and products respond in opposite fashion to the 
same substituent changes! A similar result has been found in 
proton exchange reactions of 9-substituted fluorenes (vide infra, 
section HDl). 

(3) Breakdown of the Rate-Selectivity Principle. A third im­
portant example deals with one of the corollaries associated with 
the Bronsted equation (eq 1): the rate-selectivity principle. A 
thorough discussion of its development has been given in a number 
of places,7,11,12 but the idea derives from Hammond's proposal4 

that a transition state should bear a closer structural resemblance 
to the less stable side of a reaction coordinate. For a strongly 
endergonic reaction, the transition state is predicted4 to resemble 
the products in structure, and according to the Bronsted equation, 
a should be close to one. For a strongly exergonic reaction, the 
transition state should resemble the reactants in structure, and 
such reactions should give small values of a near zero.7 Reactions 
with small a's (i.e., fast, exergonic) are relatively unresponsive 
to changes in AG°, while reactions with large a's (i.e., slow, 
endergonic) are strongly influenced by changes in AG0. Conse­
quently, if two competing reactions differ in their overall ther­
modynamics by a constant amount, then two slow reactions should 
show a larger difference in relative rate than two fast reactions. 
A number of examples are known where just the opposite result 
is obtained.11"14 

The rate-selectivity principle derives from thermodynamic 
considerations. Its breakdown and the existence of reactions with 
anomalous a's (a > 1 or a < 0) point to the importance of 
additional factors which are present in the transition state but 
absent in the reactants or products.10"19 These additional factors 
could be regarded as kinetic factors since they do not affect AG0 

for the reaction. 
C. Origin of Kinetic and Thermodynamic Factors. (1) Pairwise 

Interaction Models—LEPS, BEBO, Zavitsas, Diatomics in 
Molecules. A reasonable empirical approach for predicting the 
barrier to a group transfer reaction (A-B + C —• A + B-C) would 
be to approximate the energy of the complex, A-B-C, in terms 
of pairwise interactions between A-B, B-C, and A-C. The latter 
is clearly a kinetic factor since it is absent in the separated 
reactants and products,15 while A-B and B-C interactions contain 
thermodynamic contributions relating to the A-B and B-C bond 
strengths in the isolated molecules. 

(9) (a) C. Djerassi, N. Finch, R. C. Cockson, and C. W. Bird, / . Am. 
Chem. Soc, 82, 5488 (1960); (b) J. L. Beton, T. G. Halsall, E. R. H. Jones, 
and P. C. Phillips, J. Chem. Soc, 753 (1957). 

(10) F. G. Bordwell, J. E. Bartmess, and J. A. Hautala, J. Org. Chem., 
43, 3107 (1978). 

(11) B. Giese, Angew. Chem., Int. Ed. Engl, 16, 125 (1977). 
(12) C. D. Johnson, Chem. Rev., 75, 755 (1975). 
(13) C. G. Swain and E. R. Thornton, J. Am. Chem. Soc, 84, 817 (1962). 
(14) E. R. Thornton, J. Am. Chem. Soc, 89, 2915 (1967). 
(15) A. J. Kresge, Can. J. Chem., 52, 1897 (1974). 
(16) A. J. Kresge, in "Proton Transfer Reactions", E. Caldin and V. Gold, 

Ed., Chapman and Hall, London, 1975, p 179. 
(17) E. D. Hughes, C. K. Ingold, and U. G. Shapiro, J. Chem. Soc, 225 

(1936). 
(18) R. A. More O'Ferrall, J. Chem. Soc B, 274 (1970). 
(19) W. P. Jencks, Chem. Rev., 11, 705 (1972). 

The first attempt at deriving an A-B-C potential energy surface 
was based on an approximate quantum mechanical expression20 

for the energy of a three-body complex (A-B-C), where Morse 
and anti-Morse curves for A-B, B-C, and A-C were used to 
evaluate the various terms.21,22 The BEBO method,23 Zavitsas' 
method,24 and diatomics in molecules (DIM)25 were developed 
later and use different empirical schemes for obtaining the energy 
of the three-body complex. A striking aspect of these various 
formulations is that the calculated minimum energy pathway is 
in surprisingly good agreement with the results of ab initio cal­
culations.25-27 

(2) Intersecting Potential Functions. A second approach in­
volves joining separate potential functions for the isolated reactants 
and products to produce a barrier function for the complex, 
A-B-C. In certain cases, the two potential functions are simply 
allowed to intersect,2,3,27b'28,29 or some criterion is introduced to 
modify the potential functions as the transition state is ap­
proached.27c,d,30_32 Reasonable results have been achieved in either 
case.2,3,28"32 

(3) Hammond's Postulate and the Hughes-Ingold-Shapiro 
Principle. Related to LEPS,20"21 BEBO,23 and similar methods 
is a more qualitative suggestion by Hughes, Ingold and Shapiro,17 

which can be regarded as a generalization of Hammond's pos­
tulate.4 Hughes, Ingold, and Shapiro17 considered the effect of 
a perturbation on two arbitrary points of a potential surface. If 
two points are separated by an energy minimum and the energy 
of the first point (relative to the other) is raised by a perturbation, 
the position of the minimum will shift toward the second point. 
The opposite behavior will be observed for two points separated 
by a maximum. This effect is based on the analogous behavior 
of a parabolic minimum or maximum when a linear perturbation 
is added to the parabola. The analogy is of interest since the 
potential surface in the vicinity of a transition state is usually 
approximated as a hyperbolic paraboloid, and if the change in 
the relative energy of the two points is taken to be a linear function 
of position between the two points, the relevance of the parabo­
la/linear perturbation model can be seen. 

The Hammond postulate4 and the Hughes-Ingold-Shapiro 
generalization17 are essentially methods of predicting how the 
structure of a transition state (and its sensitivity to substituent 
effects) will change when a new substituent is introduced. Since 
a nonlinear transition state has 3N-6 internal degrees of freedom, 
a structural change could produce a perturbation in geometry along 
one or more of them. Hammond's postulate furnishes a prediction 
regarding the geometry perturbation along one of these degrees 
of freedom (i.e., the reaction coordinate), and it does so in terms 
of the relative energies of two structures located in opposite di­
rections along the reaction coordinate (i.e., the reactants and 
products). If this idea is carried to its logical extreme, in the form 
of the Hughes-Ingold-Shapiro generalization, geometric distor­
tions along each of the remaining 37V - 5 coordinates could be 
predicted in terms of the relative energies of two reference 
structures located in opposite directions along each internal co-

(20) F. London, Z. Elektrochem., 35, 552 (1929). 
(21) S. Sato, J. Chem. Phys., 23, 592 (1955). 
(22) H. Eyring and M. Polanyi, Z. Phys. Chem., Abt. B, 12, 279 (1931). 
(23) H. S. Johnston and C. Parr, J. Am. Chem. Soc, 85, 2544 (1963). 
(24) (a) A. A. Zavitsas, J. Am. Chem. Soc, 94, 2779 (1972). (b) A. A. 

Zavitsas and A. A. Melikian, ibid., 97, 2757 (1975). 
(25) (a) J. C. Tully, J. Chem. Phys., 64, 3182 (1976); (b) A. D. Isaacson 

and J. T. Muckerman, / . Chem. Phys., 73, 1729 (1980); (c) A. F. Wagner, 
G. C. Schatz, and J. M. Bowman, J. Chem. Phys., 74, 4960 (1981). 

(26) (a) D. G. Truhlar, / . Am. Chem. Soc, 94, 7584 (1972); (b) O. Kafri 
and M. J. Berry, Faraday Discuss. Chem. Soc, 62, 127 (1977). 

(27) (a) N. Agmon, Chem. Phys. Lett., 45, 343 (1977); (b) J. Chem. Soc, 
Faraday Trans. 2, 74, 388 (1978); (c) N. Agmon and R. D. Levine, J. Chem. 
Phys., 71, 3034 (1979); (d) Isr. J. Chem., 19, 330 (1980). 

(28) G. W. Koeppl and A. J. Kresge, J. Chem. Soc, Chem. Commun., 371 
(1973). 

(29) R. P. Bell, J. Chem. Soc, Faraday Trans. 2, 72, 2088 (1976). 
(30) J. L. Kurz, Chem. Phys. Lett., 57, 243 (1978). 
(31) (a) T. Kagiya, Y. Sumida, T. Inoue, and F. S. Dyachkovskii, Bull. 

Chem. Soc Jpn., 42, 1812 (1969); (b) T. Kagiya, Y. Sumida, and T. Inoue, 
Bull. Chem. Soc. Jpn., 42, 2422 (1969). 

(32) A. R. Miller, / . Am. Chem. Soc, 100, 1948 (1978). 
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Figure 1. Thermodynamic relationships between reactants, transition 
states, and products of cross reaction and identity reactions. The barrier 
to the cross section (A-B + C s=* A + B-C) can be expressed in terms 
of AE, AE*AA, and AE'cc- This relationship can be seen if molecules 
of A and C are added to the cross reaction and if A + A and C + C are 
added to the appropriate identity reactions. Alternatively, A-B and C-B 
can be used for the cross reaction while AB + AB and CB + CB are 
suitable for the identity reactions. 

ordinate. A similar model was formalized by Thornton14 in 1967 
(in terms of the parabola and linear perturbation) and has seen 
extensive, qualitative use as a two-dimensional version.14,17~I9,33~36 

The Hughes-Ingold-Shapiro generalization allows one to 
conceptualize separate kinetic and thermodynamic effects on a 
reaction barrier. Alterations in the energy differences between 
reactants and products produce geometric distortions in the di­
rection of the reaction coordinate and are associated with a 
contribution to the change in transition-state energy. Such changes 
could be termed thermodynamic effects. Distortions perpendicular 
to the reaction coordinate and the accompanying energy changes 
are not directly associated with the thermodynamics of the reaction 
and could be referred to as kinetic effects. 

(4) Marcus Rate Theory of Electron Transfer. Marcus' theory37 

for rates of outer-sphere electron-transfer reactions is also relevant 
to the analysis of kinetic and thermodynamic effects. By assuming 
that electron transfer proceeds through a transition state with zero 
(or weak) overlap between the orbitals of the two reactants, 
Marcus3 7 was able to derive the following expression for the 
dependence of the reaction barrier on AG0 for the overall reaction: 

AG* = AG^ + y2AG° + [ ( A G 0 ) 2 / 16AG0*] (3) 

When the reaction is thermoneutral, AG0 = 0 and the barrier 
is given by A G Q , which Marcus' refers to as the intrinsic barrier. 
For reactions which slightly deviate from thermoneutrality, the 
barrier also contains a thermodynamic term, 1Z2AG0. Conse­
quently, for reactions where AG° ~ 0, the barrier can be expressed 
in terms of a kinetic contribution ( A G Q ) and a thermodynamic 
contribution (1/2&G°). When AG0 > 0, a new term becomes 
important, ( A G 0 ) 2 / 1 6 A G Q , which contains both thermodynamic 
and kinetic contributions. In principle, Marcus' equation can treat 
the same kinetic and thermodynamic effects on energy which 
originate in the H I S generalization17 and in Thornton's mod-
e l 14,17-19,33-36 j n fact> j t j s noteworthy that Marcus' equation can 

(33) J. M. Harris, S, G. Shafer, J. R. Moffatt, and A. R. Becker, / . Am. 
Chem. Soc, 101, 3295 (1979). 

(34) C. G. Swain, D. A. Kuhn, and R. L. Schowen, / . Am. Chem. Soc, 
87, 1553 (1965). 

(35) W. J. Albery, "Progress in Reaction Kinetics", Pergamon, Oxford, 
1967, Vol. 4, p 355. 

(36) E. C. F. Ko and A. J. Parker, J. Am. Chem. Soc, 90, 6447 (1968). 
(37) R. A. Marcus, / . Chem. Phys., 24, 966 (1956). 

be derived from a surface such as the hyperbolic paraboloid 
envisioned by Hughes, Ingold, and Shapiro.38d 

(5) The Hemistructural Relationship and Energy Additivity. 
Recently, a new relationship between geometry and energy in 
molecules has been discovered.38 This hemistructural relationship 
is relevant to the problem of kinetic and thermodynamic control 
and can be used to show that kinetic and thermodynamic con­
tributions to reaction barriers can be expressed in terms of a simple 
additivity relationship. Furthermore, it is shown that the kinetic 
and thermodynamic contributions to a barrier can be evaluated 
from either experimental data or quantum mechanical calculations. 

II. Separation of Kinetic and Thermodynamic Factors 

A. Cross Reactions and Identity Reactions. In order to apply 
the hemistructural relationship38 to a group transfer reaction, we 
need to consider the unsymmetrical, or cross,37 reaction 

A - B + C - * [ A - B - C ] ' — A + B-C 

as well as the two symmetrical identity reactions 

A - B + A - * [A-B-A] * — A + B-A 

C - B + C — [ C - B - C ] * — C + B-C 

(4) 

(5) 

(6) 

The transition state [A-B-C] * bears a partial structural resem­
blance to the reactants and products and to the two identity 
reaction transition states, [ A - B - A ] * and [ C - B - C ] * . Conse­
quently, one might anticipate that the barrier for the cross reaction 
would show some dependence on the barriers of the two identity 
reactions as well as on the overall thermodynamics. The quan-

(38) A structure such as A-B-C is hemistructural to A-B-A and C-B-C 
if a common origin can be defined so that the nuclear positions of the A-B 
fragments of A-B-C and A-B-A are superimposable and if the nuclear 
positions of the B-C fragments of A-B-C and C-B-C are superimposable. 
A more general definition is given in ref 38a. (a) J. R. Murdoch, J. Am. 
Chem. Soc, 104, 588 (1982). (b) J. R. Murdoch and D. E. Magnoli, J. Am. 
Chem. Soc, 104, 2782 (1982). (c) It has been shown38' that the kinetic energy 
of a structure could be expressed as 

T = 2EEEC11/ T,j C11: (9a) 

' are molecular orbital coefficients and Ttj are the kinetic 
energy matrix elements. It was also pointed out that for proper choice of basis 
functions, all structures could employ the same basis set and the same kinetic 
energy matrix. Consequently, the change in kinetic energy from one structure 
to another can be expressed solely in terms of changes in the MO coefficients. 
For zero-force structures, the virial theorem is applicable so that the total 
molecular energy (ET), including nuclear repulsion terms, can be expressed 
as 

ET-- (9b) 

The kinetic energy can be evaluated from eq 9a or by summing the diagonal 
elements of T0 over the occupied MO's." 

T0 = 2[CY-T-C (9c) 

It is convenient to introduce the eigenvectors (U) of T so that 

T0 = 2(Cf-U-If-T-U-If-C (9d) 

T0 = 2Cf-K^-C (9e) 

where AT' is the diagonal eigenvalue matrix corresponding to T and C = IfC. 
Equation 9e can be used to express the kinetic energy as a quadratic function 
of the transformed MO coefficients 

T = 2ELC ; >
2 X,/ (9f) 

where C111 are elements of C and X1,' are the eigenvalues of T. Using the virial 
theorem, the total molecular energy, including nuclear repulsion, can be 
expressed as 

E1 = 2EEC111
2X11 

v I 

where X„ = -X11'. Equation 9g can be further simplified as 

Ej = EP„X« 

(d) J. R. Murdoch, unpublished. 

(9g) 

(9h) 
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titative nature of this relationship will depend on defining the 
structural relationships between [A-B-A]*, [A-B-C]*, and [C-
B-C] * and on determining how the similarities in structure relate 
to the energies of the structures. 

B. A New Theory of Nuclear Substitution. In another paper,38" 
the first step in the development of a general theory of nuclear 
substitution has been presented. The goal of this theory is to 
describe the changes in wave function, geometry, and molecular 
properties which accompany the replacement of one molecular 
fragment by another. Examples of potential applications are the 
three transition states, corresponding to reactions 4-6, where an 
"A" fragment is successively replaced by a "C" fragment (viz., 
[A-B-A]*, [A-B-C]*, [C-B-C]') . The theory is based on 
analytical SCF equations and, at present, has been carried out 
to first-order perturbations in MO coefficients and second-order 
perturbations in energy. Using the Hellmann-Feynman theorem 
and the successive changes in wave function between [A-B-A]*, 
[A-B-C]*, and [C-B-C] *,38a it can be shown that if the two 
symmetrical structures occur at saddle points on a potential 
surface, then the hemistructural geometry38 of [A-B-C] * will also 
occur at a saddle point, subject to certain limitations,38a,b The 
energy differences between the three transition states can be either 
additive or nonadditive, but it is significant that neither case 
requires that the A, B, or C fragments behave as equivalent groups 
in the three different transition states.38a,b The maintenance of 
constant electronic structure over the corresponding fragments 
in [A-B-A]*, [A-B-C]*, and [C-B-C]* is not a prerequisite for 
observing either energy additivity or the hemistructural rela­
tionship.38 

The relationships mentioned above38 derive in part from per­
turbation theory, and it is conceptually useful to start with an 
unperturbed reference that is structurally as close as possible to 
the perturbed molecules. A thermodynamic "balancing" trick 
accomplishes this purpose and is carried out by adding two 
molecules of B-C to each side of reaction 5, two molecules of A-B 
to each side of reaction 6, and one molecule each of A-B and B-C 
to the left and right sides of reaction 4. Note that the relative 
energy of each point on the potential surface for each reaction 
is unchanged by this procedure. 

The applicability of perturbation theory is dependent on the 
degree to which the wave function changes when [A-B-A]* is 
altered to [A-B-C]*.38 Using the "balanced" structures, the 
comparison is between [A-B-A] * + C-B + C-B and [A-B-C] * 
-I- A-B + C-B. This is similar to a comparison between A + C-B 
+ C-B and C + A-B + C-B where the energy difference is AE 
for reaction 4. Consequently, when i\E is close to zero, it would 
not be unreasonable to find that the energy difference and changes 
in wave function between [A-B-A] * + C-B + C-B and [A-B-
C] * + A-B + C-B are also small. As a result, AE ~ 0 may be 
a sufficient condition for the hemistructural relationship to apply 
to the cross reaction transition state.39 

C. Identity Reaction Barriers and AE. A Limiting Case. A 
special case of the hemistructural relationship corresponds to 
energy additivity.383 The importance of this can be seen in Figure 
1, where the thermodynamic balancing conditions have been 
added. Note that the reactants for the two identity reactions are 
spaced at AE for the cross reaction and that the energy of the 
cross reaction transition state is the mean of the energies for the 
corresponding identity reactions. Using these relationships, an 
expression for the barrier to the cross reaction can be derived 

AE* = y2(AE\A + A£ *cc) + Y2AE (7) 

(39) Strictly speaking, A£ ~ 0 is a necessary condition. Rigorously, the 
hemistructural condition will apply as the structures A and C converge, but 
this may not be necessary. Energy differences between B'-A + B-C and B'-C 
+ B-A will also be small if the B' and B fragments are similar, particularly 
when B-C and B-A bond energies are similar. Examination of heats of 
formation for simple organic compounds (D. R. Stull, E. F. Westrum, Jr., and 
G. C. Sinke, "The Chemical Thermodynamics of Organic Compounds", 
Wiley, New York, 1969) shows that such energy differences are often within 
the range of 0-6 kcals. This suggests that the structural changes might be 
considered as small perturbations (ref 38a) in terms of the total wave func­
tions. This point needs further evaluation. 
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where A£*AA and A£* c c are the two identity barriers and AE 
is the energy change for reaction 4. Given the conditions38" leading 
to the hemistructural relationship and energy additivity for the 
transition states, eq 7 gives a rigorous38" separation of kinetic and 
thermodynamic contributions to the barrier of the cross reaction. 
If "C" is varied through a sequence of structures, positive increases 
in AE will produce increases in the barrier but only half as large 
as in AE. Furthermore, AE*Cc c a n b e expected to vary. If the 
change in AE*CC is in the same direction as for AE, the reaction 
will appear to be under thermodynamic control, whereas if the 
change in AE* cc is in the opposite direction and large enough to 
offset the change in AE, the reaction will appear to be kinetically 
controlled. Equation 7 gives a reasonable theoretical framework 
for understanding kinetic and thermodynamic control in terms 
of substituent effects on the barriers of two identity reactions as 
well as on the overall thermodynamics. The major significance 
of eq 7 is that it gives the correct description for a cross reaction 
barrier when the hemistructural relationship and energy additivity 
are applicable. Since the conditions known to be necessary for 
energy additivity are now much less restrictive than formerly 
believed,38" it would not be surprising if eq 7 should give a good 
account of barriers for real reactions where modest changes in 
structure are made. 

D. Steric Effects and Energy Additivity. (1) Proton Transfer 
between Substituted Fluorenes and Fluorenyl Anions. One 
mechanism that could conceivably lead to a breakdown of the 
hemistructural relationship is the introduction of bulky substituents 
on the end atoms. It is interesting to note that in the proton-
transfer reactions between 9-alkylfluorenes and 9-alkyl-
fluorenyllithium, steric effects appear to be small and their con­
tribution to nonadditivity in the relative barriers to reaction appears 
to be negligible.40 

This is a rather remarkable result considering that the substituents 
are located on the same carbon involved in the proton transfer 
and that the substituents involve various combinations of R = H, 
Me, Et, /-Pr, and r-Bu. This observation is unprecedented and 
tentatively suggests that unusually large steric interactions will 
be necessary to force a breakdown of the hemistructural rela­
tionship. 

(2) Proton-Bound Dinners in the Gas Phase. The energies of 
proton-bound dimers of various amines, neutral molecules, and 
anions have also been shown to exhibit close additivity relation­
ships.41 For example,41 the energy of [sec-BuNH2-H-NHMe2]+ 

has been shown to be 0.25 kcal less than the mean energies of 
the two symmetrical complexes, [5ec-BuH2N-H-NH2-seoBu] + 

and [Me2HN-H-NHMe2]+. Similar results41 have been found 
for about 40 other proton-bound dimers where AH° for the re­
action, R1NH3

+ + R2NH2 — R1NH2 + R2NH3
+, is around 0 to 

3 kcal/mol. Steric effects on the dimer heat of formation appear 
negligible, constant or nearly additive. 

E. Separation of Kinetic and Thermodynamic Factors Is Rig­
orous as a Limiting Case. Comparison of eq 7 with eq 3 shows 
that Marcus' intrinsic barrier, AGl, corresponds to 1/2(A£*AA + 
A£*cc). Marcus42 derived this same result from the weak overlap 
assumption by suggesting that the intrinsic barrier should consist 
of a separate term for each reactant. These assumptions are 

(40) J. R. Murdoch, J. A. Bryson, D. F. McMillen, and J. I. Brauman, J. 
Am. Chem. Soc, 104, 600 (1982). 

(41) (a) D. E. Magnoli and J. R. Murdoch, J. Am. Chem. Soc, 103, 7465 
(1981); (b)D. H. Aue and M. T. Bowers, Gas Phase Ion Chem., 8, 1 (1979). 

(42) R. A. Marcus, J. Chem. Phys., 43, 679 (1965). 
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appropriate for an outer-sphere electron-transfer reaction which 
involves little overlap between the reacting orbitals but could be 
questioned when applied to reactions involving bond cleavage and 
bond formation.42,43 Marcus has recognized this limitation42'43 

and has shown43b that BEBO, and a more general method of which 
BEBO is a special case, give eq 7 in the limit of small AE and 
small IAZI'AA - A£*cc |. A later empirical derivation44 of Marcus' 
equation (eq 3) avoids both the weak overlap approximation as 
well as the specialized bond energy/bond order (BEBO) as­
sumptions, which seem more appropriate to radical transfer re­
actions. The present derivation, through an ab initio SCF 
framework,38 establishes eq 7 as a correct limiting case for all 
classes of group transfer reactions (including electron transfer) 
and removes the empirical character of previous derivations .43b-44,45 

III. Interplay of Kinetic and Thermodynamic Factors 
A. Breakdown of the Hemistructural Relationship. One im­

portant question dealing with the hemistructural relationship 
involves the range of AE where energy additivity will be observed. 
Several authors46-48 have commented on the fact that Bronsted 
plots are often linear over long regions of ApÂ  (~ 10 pK units) 
and have suggested that substantial substituent effects (13 kcal 
or more) on AG0 may not necessarily result in an appreciable shift 
in transition-state structure. This conclusion is in accord with 
other results383 which have shown that energy additivity and 
geometry additivity will go hand in hand and that geometry 
additivity may persist even when energy changes show some 
nonlinearity. 

The long linear regions observed in many Bronsted plots can 
be interpreted in terms of Marcus' intrinsic barrier, AGQ. The 
nonlinearity of AG* with respect to AG° is due to the quadratic 
term in eq 3 (i.e., (AG°)2/16AGj), which in turn depends on the 
relative magnitude of AG° and AGj For a fixed value of AG0, 
the nonlinearity will decrease as the intrinsic barrier increases so 
that linear Bronsted plots over 10-pK units would be expected for 
intrinsic barriers greater than 15 kcal/mol. 

While Marcus' relationship is useful for gaining qualitative 
insights, the numerical deductions from this theory could easily 
be questioned. Consequently, it would be instructive to approach 
the extension of eq 7 from an alternative viewpoint. Two previous 
options have already been noted.4315'44 

B. Expressing the Total Energy in Terms of MO Coefficients. 
It is possible to express the total energy of a molecule as 

ET = ZP11K (9) 
i 

where Pn are the diagonal elements of the transformed density 
matrix,38a'c iF-P^'U. Since the \u are constant,38,50 eq 9 can be 
used to express the total molecular energy, including nuclear 
repulsion, for any zero force structures which are isoelectronic 
and related to each other by an arbitrary transformation of nuclear 

(43) (a) R. A. Marcus, Faraday Symp. Chem. Soc, 10, 60 (1975); (b) 
J. Phys. Chem., 72, 891 (1968). 

(44) J. R. Murdoch, J. Am. Chem. Soc, 94, 4410 (1972). 
(45) M. A. Ratner and R. D. Levine [J. Am. Chem. Soc, 102, 4898 

(1980)] have correctly recognized that eq 7 can be obtained by assuming that 
(a) the activation process for each chemical species is independent of its 
reacting partner and (b) the structures of the various fragments are the same 
in the identity and cross reactions. While these assumptions are sufficient for 
energy additivity, the results on the hemistructural relationship38 show that 
these conditions are not necessary in order for eq 7 to hold. As a point of 
historical interest, it is worth noting that Marcus obtained eq 7 by using 
assumption a.42 By applying assumption a to the derivative, d&G*/dAG°, it 
is possible to derive the entire Marcus relationship (eq 3) which includes eq 
7 as a special case.44 The correlation of eq 7 with energy additivity has been 
used to interpret the relationship between experimental identity and cross 
reactions for a proton-transfer process.40 

(46) D. S. Kemp and M. L. Casey, J. Am. Chem. Soc, 95, 6670 (1973). 
(47) A. Streitwieser, Jr., W. B. Hollyhead, A. H. Pudjaatmaka, P. H. 

Owens, T. L. Kruger, P. A. Rubenstein, R. A. MacQuarrie, M. L. Brokaw, 
W. K. C. Chu, and H. M. Niemeyer, J. Am. Chem. Soc, 93, 5088 (1971). 

(48) F. G. Bordwell and W. J. Boyle, Jr., J. Am. Chem. Soc, 93, 511, 512 
(1971). 

(49) For convenience, the basis set is taken to be orthogonal. 
(50) When the MO's of the reactants which have been labeled as occupied 

remain occupied for the transition state and the products, the changes in C11 
are continuous. The X„ are independent of the MO coefficients and the 
particular structure. 

Figure 2. Energetic contributions of two half-reactions to the identity 
reaction barrier. F o r / > 1I1, the thermodynamic contribution of the 
uphill half-reaction outweighs the contribution of the downhill half-re­
action, and a barrier results. F o r / < V2, the intermediate is more stable 
than either reactant or product. 

coordinates (i.e., isomeric). In particular eq 9 can be used to 
interrelate the total energies of the reactants, transition state, and 
products through changes in the transformed density matrix ele­
ments. Equation 9 is an important result since P1-, can be broken 
down into contributions from each molecular orbital,51 thus al­
lowing the total molecular energy, including nuclear repulsion, 
to be divided into terms associated with particular MO's. 

C. A Special Case—Proton-Transfer Reactions and Intrinsic 
Barriers. This property is useful for analyzing the energetics of 
proton-transfer reactions such as 

A-H + "C ^ A" + H-C (10) 

if the overall reaction is divided into two "half-reactions52 

A-H — A-

"C — H-C 

V1 

-V1 

(H) 

(12) 

Since each acid and its conjugate base are isoelectronic, the 
number of MO's on the left and right side of each half-reaction 
is unchanged. Consequently, eq 9 can be divided into two parts 
so that the total energy of the reactants is expressed as 

ET< = ZP11** X11 + ZPf X,. 

ET1 = PAH + Pr 

(13) 

(13a) 

where PU
AH represents the transformed density matrix elements 

for A-H and Pu
c are the corresponding quantities for C". We 

can gain some insight into the nature of the barrier to proton 
transfer by considering that the PnS will start with values char­
acteristic of the reactants and end with values appropriate to the 
products. From eq 11 and 12 it can be seen that PAH will increase 
on going from reactants to products, while Pc will decrease. The 
barrier for the overall reaction is given by 

AE* = (P\H - PAH) + (P*c- Pc) (14) 

while AE is given by 

(51) The density matrix element, Pu is equal to 2EJ00OutaMj, where a„t are 
the MO coefficients.38 The transformed density matrix IP-P-U is equivalent 
to 1/T-EJfU11U and EJ00CZ1U11-C/where EJ00A = p- T h e Present finding that 
specific interaction terms are not required has other precedents. For example, 
P. Politzer and R. G. Parr have shown that molecular energies can be written 
as a sum of atomic-like terms, with no other contributions [/. Chem. Phys., 
61, 4258 (1974)]. However, this approach differs considerably from the 
present one in that Politzer and Parr divide the nuclear repulsion interactions 
between the respective nuclei. On the other hand, eq 9a shows that the kinetic 
energy can be expressed without interaction terms, and at stationary points, 
eq 9b is applicable so that the total energy can also be expressed without 
interaction terms. 

(52) Note that the two "hair-reactions do not balance with respect to mass 
individually but that the sum does. Also note that the missing fragment (H+) 
has no electronic energy. 
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AE = (P A - PAH) + (PCH - -Pc) 14a) 

It is apparent that if PAH and Pc change to the same fractional 
extent (J) at the transition state, then no barrier or minimum is 
possible unless f < 0 or f> 1. When P*Ali and P*c

 a r e inter­
mediate with respect to the initial values (PAH and Pc) and final 
values (PA and PCH)< an energy maximum or minimum separating 
the reactants or products requires that the extent of fractional 
change be different for P*AH and P*c- This is illustrated for an 
identity reaction in Figure 2 where the two half-reactions are 
indicated by the diagonal arrows. F o r / = ' /2 , the increase in P^n 

is exactly offset by the decrease in PA so that the "transition state" 
occurs at the same energy as the reactants and products. When 
f < ' / 2 then an energy minimum and a stable intermediate are 
produced. Using eq 13, 13a, and the relationships in figure 2, 
the barrier for the identity reaction can be expressed in terms of 
/ a n d V. 

A-H + "A ^ A" + H-A (15) 

A£*AA = A ^ A - (1 - A ) ^ A = ( 2 A -1)KA = 

(P°*AH - PAH) + (P0*A " -PA) (16) 

A = ( A £ ' A A + ^ A ) / 2 K A (17) 

These relationships can be used to demonstrate a very interesting 
property of A and A when the hemistructural relationship applies 
to the transition state of the cross reaction (A-H + C" ^ A" + 
HC; eq 10). Given the hemistructural relationship, eq 7 can be 
applied to reaction 10 and rewritten as 

AE* = 
(fA-l/2)AE* 

(2A ~ D + 
(/0C- 1/2)AE*CC 

(2/°c - D 
+ Y2AE (18) 

and by using eq 16, the relationship AE = VA - Vc and eq 14, 
it can be shown that 

A£* = A ^ A - (1 ~fc)Vc = (P0* AH - PAH) + ( ^ c - Pc) 
(19) 

By comparing eq 19 and 11 it is apparent that the terms char­
acterizing the energy change in each reactant [i.e., (P°'AH ~ ^AH) 
and (P0*c ~ PQ)] are effectively transferable from the identity 
reactions to the cross reactions.61 

The hemistructural relationship and the finding that the total 
energies of the reactants, products, and transition state can be 
expressed in the remarkably simple form of eq 13a have given 
us some new insights into the nature of barriers to proton transfer. 
In particular, we have seen that the identity barrier should be 
proportional to the proton affinity of the base (eq 16) and that 
this proportionality should carry over into the cross reaction 
transition state (eq 19). Consequently, the barrier of a cross 
reaction should depend on the proton affinities of the bases in two 
ways: once as a simple difference in the 1Z2AE term and once 
as a contribution to the intrinsic barrier. Since the proton affinities 
affect both AE and AEl, i{ seems unlikely that intrinsic barriers 
will always be independent of AE (or AG0).16,44,53 This has been 
confirmed experimentally in at least two instances.40,41 

Equations 7, 16, and 19 have been obtained on a relatively 
sound38* theoretical basis. To go beyond the hemistructural re­
lationship, it is necessary to determine how the transformed density 
matrix elements (eq 13) vary with changes in nuclear position. 
The basic theoretical framework for this has been laid down,38a 

but certain refinements remain to be completed. Rather than wait 
for this result, we shall temporarily leave the warm nest of rigor 
and venture out onto the thin ice of empiricism. 

D. An Empirical View on the Breakdown of the Hemistructural 
Relation. The basic form of eq 13, as well as chemical intui­
tion; 4,5,7,14,17-37 suggests that the extreme limits of transition state 
structure will lie at the reactants for very exergonic reactions and 
at the products for very endergonic reactions. Equation 14 
demonstrates that no new terms must be added to eq 19, but the 

(53) E.g., M. M. Kreevoy and Sea-Wha Oh, J. Am. Chem. Soc, 95, 4805 
(1973). 

Figure 3. Variation of/A with T. The parameter /°A represents the 
fraction to which the thermodynamic contribution of the uphill half-re­
action appears at the transition state of the identity reaction. /A should 
approach 1 for strongly endothermic reactions and should approach 0 for 
strongly exothermic reactions. The figure shows a parabolic dependence 
/A on the exo/endo thermicity parameter, r. 

modifications to eq 19 must include some mechanism for trans­
forming A and (1 - A ) t 0 z e r o f° r o n e c a s e a n d unity for the 
other. 

At this point it is appropriate to introduce the assumption that 
/ A and (1 - / c ) can be expressed as functions of a single variable 
(e.g., T). The variable r is expected to exhibit a dependence on 
AE and possibly other parameters such as AEQ, force constants, 
or equilibrium bond lengths. It is convenient to set r = 0 for AE 
= 0 and T = ±1 for AE corresponding to the respective endo­
thermic and exothermic limits (finite or ±°°). The correspondence 
between T and/A and (1 - / c ) is assumed for two values (r = - 1 , 
/A = (1 - / c ) = 0; T = + 1 , / A = (1 - / c ) = 1) and is known for 
a third [T = 0, /A = A and (1 - / c ) = (1 -fc)]. These rela­
tionships are illustrated in Figure 3. 

Given the above assumption that/A is dependent on a single 
variable, T, we can write the following general expression for/A, 

A = A + '/2Si(T) + [(I - 2A) /2]g 2 ( r ) (20) 

where g{ (T) and g2(r) are odd and even functions of T,54 re­
spectively. Without loss of generality; gt(r) = g2(r) = 1 for T 
= 1; *I(T) = g2(r) = 0 for r = 0; - * , ( T ) = g2(r) = 1 for r = - 1 . 
Introducing the third assumption tha t / c can also be expressed 
in terms of gi(r) and g2(r), 

(1 -Zc) = (1 - A ) + Vigiir) + [ ( 2 A - l ) /2]f t ( r ) (21) 

Substituting/A and (1 - / c ) for A a n d U "A) l n eQ 19* 

A£* = VA[fA + Y2S1(T) + [(I - 2A) /2 ] f t ( r ) ] -

r c [ ( i - A ) + VaM + [ ( 2 A - D/2]f t(r)] (22) 

After substituting eq 16 and 19 and rearranging, 

AE* = [1 - g2(r)]AE*0 + [1 + gx(r)\Y2AE (23) 

For T = 0, g2(r) = g}(r) = 0, and eq 23 reduces to the hemis­
tructural limit, eq 7. For monotonic g2(r) and g\(r), increases 
in T reduce the contribution of the intrinsic barrier to AE*, while 
the importance of AE increases until A£* = AE at T = 1. As 
T becomes progressively more negative, both AE and AE*Q con­
tribute less to AJE*, which converges to zero for r = - 1 . Equation 
23 provides a reasonable basis for understanding the changes in 
the relative importance of kinetic and thermodynamic contributions 

(54) An odd function of T can be expressed solely in terms of odd power 
monomials. An even function of T can be expressed solely in terms of even 
power monomials. 
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Table I. Comparison of x and AE*IAE* -Marcus vs. 
Sigmoidal Theories, e = 1 

AEI 
AE* 

0.00 
0.50 
1.00 
2.00 
3.00 
77 

3.50 
4.00 

" 5 = 
(At*Ii 

Marcus 

0.00 
0.125 
0.25 
0.50 
0.75 
0.78 
0.875 
1.00 

(TMarcus ' 
\F*) • 

X 

sin 

0.00 
0.25 
0.48 
0.84 
0.99 
1.00 
1.00 
1.00 

arctan 

0.00 
0.24 
0.42 
0.64 
0.74 
0.75 
0.78 
0.80 

~ TsigmoidaJ/ = 

tanh 

0.00 
0.24 
0.46 
0.76 
0.91 
0.92 
0.94 
0.96 

"sin 

0.00 
0.02 
0.05 
0.12 
0.06 
0.05 
0.02b 

0.00b 

5° 

*arctan 

0.00 
0.01 
0.03 
0.02 
0.00 
0.00 
0.01 
0.00b 

(A£*/A£t)M arcus " 
idab 'Marcus barrier i > 

rsigmoidal ^ TMarcus' 
signoidal barrier 

5 tanh 

0.00 
0.01 
0.05 
0.07 
0.02 
0.02 
0.00 
0.00b 

for 
Equation 24 requires that iA/fl < 

2(1 +T)IAiTJi. For AE outside this range, eq 24 is replaced by 
AE* = AE for positive AE* = 0 for negative AE. See footnote 55. 

to AE* as AE departs from zero and approaches the endothermic 
and exothermic limits. 

The simplest odd and even functions of T are the monomials, 
T and T2. Substituting T = £ I ( T ) and T2 = g2(r) into eq 23, 

AE* = (1 - (24) r2)A£0* + (1 + T)Y2AE 

It is interesting to note that for T > 0 and AE*0, AE > 0, AE* 
converges to AE from above, provided that AE < 4AiSg-55 This 
inequality also appears in Marcus ' theory, and if r is set equal 
to AE/AAEl a n d substituted into eq 24, Marcus ' equation is 
produced. However, this choice for T is not the only possibility. 

(55) This can be shown by setting T = ±(1 - t) for i ~ 0, substituting into 
eq 24, dropping t2 terms, and comparing AE* with the rhs. For x > 0, AEQ, 
AE < 0, AE* approaches AE from below for AE > AAEl, For x < 0, AE0* 
< 0, AE > 0, AE* approaches zero from below for 4 |A£j | > AE. For x < 
0, AEl > 0, A£ < 0, AE* approaches zero from above for 4AC0' ^ |A£|. Since 
e2 terms are omitted in the above derivation, the inequalities (e.g., AE < AAEl) 
are strictly valid only in the limit e -» 0, which is equivalent to |T| -» 1 as IAEI 
— 4|£0 ' |. If |x| — b < 1 as |A£| — 4| A£0'|, then the factor of 4 in the above 
inequalities is reduced somewhat, and AE is confined to the range - ( 4 -
2e)|A£0'| ^ A£ < (4 - 2e)|A£j|. The fact that inequalities of this type often 
lead to unrealistic behavior at extreme values of AE has troubled some authors 
(e.g., ref 27). Marcus has avoided these difficulties by using eq 3 for |AG°| 

< 4|AG0' and setting AG* = AG0 for |AG°| > 4|AGj. This procedure elim­
inates the above problems, but introduces two new features: (1) the barrier 
of a highly endergonic reaction approaches AG0 for a finite value of AG0; (2) 
AG0 is a continuous function of AG°, but the derivative, (dAG'/<9AG0)aCoi 
is discontinuous at |AG°| = 4|AGo|. Some authors27 have suggested that it 
would be "more rigorous" if the endergonic and exergonic limits for the barrier 
are reached only as AG0 -» ±°° and if the derivative dAG*/dAG°)AGo> is 
continuous for all values of AG0. In practice, no large differences have been 
noted between Marcus' barriers and the barriers of these "more rigorous" 
methods (e.g., ref 27 and 43b). The present authors take a neutral stand on 
this question for the moment and simply note that it has not yet been theo­
retically established whether approximations beyond eq 7 can still be expressed 
in terms of simple parameters such as AGj and AG0. Basing a derivation on 
empirical approximations which differ from those of Marcus may yield an 
exergonic limit for a barrier at AG° = -°° and may avoid discontinuous 
derivatives, but there is no guarantee that the calculated barriers will be an 
improvement over the corresponding Marcus barriers. In any event, the range 
where AE results in a barrier can be extended indefinitely by choosing al­
ternative odd or even functions of x in eq 23. For example, if r2 in eq 24 is 
replaced by T2", the endothermic limit for AE increases from 4AE0" to AnAEl. 
Equation 23 is consistent with either a finite or infinite endothermic limit for 
AE: using simple algebra, it can be shown that if 

%\rg~)] 
^ 1 L i - s,<T) J is finite (infinite) then AE* -* AE from above for a finite (infinite) value of 

AE > 0. Two examples of gi(r) and g2(r) which correspond to infinite 
endothermic limits are g\{r) = 3 / 2 T - ' /2x , g2(x) = x2 and g,(x) = sin (TTT/2); 
g2(r) = 1 - cos (TTX/2). In deriving eq 23, it has been assumed t h a t / A and 
(1 - fc) can be described in terms of the same parametric functions, ^1 (x) and 
g2(x). If this restriction is relaxed so that / A and (1 - fc) use different 
parametric functions [e.g., giA(x), g2

A(x), giC(x), g2
c(x)], then eq 23 assumes 

the form 

AE* = [AE*0 + KA('/2 Jg2Hr) + VcQ/2 -fc°)g2C(r)} + 

V2[AE + VKgi\r) - Krf l
c(x)] (23a) 

Note that the kinetic term contains a weighted sum of VA and Vc, while the 
thermodynamic term contains a weighted difference of VA and V0. 

Table II. Energies of Rare Gas Atoms and Derivatives 

energy, hartree 

X 
X+H 
XH+X 
HeH+X 
NeH+X 

X = He 

-2.807784 
-2.854369 
-5.685524 

X = Ne 

-126.604525 
-126.794722 
-253.484377 
-129.607952 

X = A r 

-521.222881 
-521.383544 

-1042.651723 
-524.192671 
-648.067884 

Table III. Geometries of Protonated Rare Gas Atoms 
and Derivatives 

He Ne Ar 

'XH. A 
'HeHX." A 
'NeHX. A 
'ArHX. A 

0.9301 
1,0220 
1.2185 
1,3593 

0.9867 
1.0120 
1.0929 
1.0889 

1.3482 
1.3562 
1.5266 
1.5155 

0 'HeHX = H-X bond length in 

Table IV. Intrinsic Barriers of th 

AEf, kcal 
V 
f 

HeH+He 

-14.66 
29.23 
0.2493 

HeH+X. 

e Identity Reactions 

NcH+Ne 

-53.42 
119.35 
0.2762 

ArH+Ar 

-28.42 
100.82 
0.3590 

The form of eq 24 places certain restrictions on T since there 
are constraints on the behavior of AE* as the limiting cases are 
reached. For example, the first derivative of eq 24 with respect 
to AE might approach unity or vanish as AE* —• AE or AE* —-
0. These considerations56,57 suggest a sigmoidal dependence of 

(56) It can be shown that acceptable limits for the derivatives of x are as 

dx \ 
VdA£jT„ VdAEA-, V d A £ 2 / r „ \ d A £ 2 / „ 

follows:57 

2AE0* VdA£/T,o 4AE0* 

The limit on (dx/dAE)T=0 is noteworthy since the lower limit is identical for 
that when x = AE/4AEJ, which leads to the Marcus relationship. For sim­
plicity, these derivatives are partial derivatives where Vc,fx,fc are constant 
or VK,fK,fc are constant. These solutions are not unique if ' / 2 A £ - 2xA£ ' 
approaches zero as occurs for x = AE/AAEl ' n Marcus' theory. 

(57) Differentiating eq 24 with respect to AE, 

dAEj dAE' 

dA£ dA£ 
(1 - x2) + ^2(I + x) + 

dAE 
['/2AE-2XAE*] (24a) 

For x = l , dAE ' /dAE approaches 1 so that an acceptable solution for (dx/ 
dA£)T=1 is zero. When x = - 1 , dAE' /dAE approaches zero and (dx/dA£) r=_, 
= 0 is again acceptable. Differentiating again with respect to AE 

d 2AE' 

d(A£)2 

dx 

dAE [ dAEo' l d2X 

d(AE): 

d2A£; 

[V2AE - 2XAE0'] + 

;d • 2 A £ ° ( d I i ) 2 ( 2 4 b ) 
d(A£)2 

For x = ±1, d2A£*/d(A£)2 = 0, and d2A£0*/d(A£)2 is always zero56 so that 
d2x/d(A£)2 = 0 is an acceptable solution. For x = A£ = 0, eq 24b becomes 

d 2 A£»\ _(_^i_\ _ , A # r , f . i i _ y _ ( 
d(A£) 2 ; r .„ " VdAEjr=o 0VdAEA=O I 

da \ 
iAEJr 

(24c) ( d2AE 
d(A£) 

The parameter a is equivalent to the Bronsted slope and solving eq 24c for 
(dx/dA£)T.0 

( - £ - ) = — or 0 for ^L « -L- (24d) 
VdA£/r=o 2AE0* dAE 8A£0* 

(-*-) = ^ f o r ^ = ^ (24e) 
VdAEA=O 4A£0« dAE 8A£0* 

Two acceptable solutions for (dx/dA£)r=0 are 

^ > ( j M > ^ o r ^ > ( j M >0 (240 
2A£0» V d A £ / , = 0 4AE0' 4AE0* V dAE /T=o 
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T on A.E.58'59 Several possibilities include 

T = sin (AE/2(AE*0) |A£/A£0*| < eir (25) 

r = (2/7r)arctan (7rA£/4eA£0*) (26) 

r = tanh (AE/2* AE0*) (27) 

The parameter t has been introduced to give the appropriate 
limiting slope at AE = 0. When « = 1 the slope reaches the upper 
limit,571Z2AE(K a n d for e = 2, the slope approaches the Marcus 
limit, '/4A£o-57 These functions for r can be individually sub­
stituted into eq 24 and used to calculate A£*. In Table I, r is 
calculated by using eq 25-27. The results are compared with the 
linear approximation r = AE/AAEl and used to compute 
AE*/AEQ for the various choices of r. For AE0* = 10 kcal, the 
maximum discrepancy in AE* j AEQ between Marcus theory and 
the "sigmoidal" theories is slightly over 1 kcal.60 The average 
difference over the range 0 < AE/AEQ < 4 amounts to about 0.25 
kcal.60 The significant point is that there is little difference in 
the barrier predictions between Marcus' theory and the "sigmoidal" 
theories as a group and an even smaller difference between the 
"sigmoidal" theories themselves. Marcus has made a similar point 
in connection with the BEBO extension of the weak overlap 
electron-transfer theory (eq 3).43b 

When the slope of the sigmoid functions is adjusted (« = 2) 
to correspond to the Marcus slope ( ' / ^AEQ), there is no significant 
difference between any of the theories over the range 0 < AE/ AEQ 
< 3. At the extreme values of AE, the discrepancies range from 
about 0.25-1.3 kcal for AEQ = 10 kcal.60 

E. Summary—Theory vs. Empiricism. The model described 
above incorporates sound theoretical principles with three empirical 
assumptions. An important finding is that the energy at the 
transition state(s) of the A-H-C potential surface can be expressed 
as the sum of two terms. These terms, respectively, reduce to the 
total energy of AH and C at the reactants and to the total energy 
of A and HC at the products. In the hemistructural limit, each 
term is effectively61 transferable from one of the two identity 
reactions. Consequently, at the transition state, no separate 
interaction terms between the A and C fragments are specifically 
required. It is shown that each of the two terms can be associated 
with an individual half-reaction. The energy contribution of the 
"uphill" half-reaction is characterized by a parameter, /A , while 
the contribution of the "downhill" half-reaction is measured by 
1 - fc. The first empirical assumption is that fA and 1 - fc 

approach limiting values (0 or 1) for extreme values of |A£|. The 
remaining two empirical assumptions are that/A and / c are de­
pendent on a single variable (T) and that/A and/ c are expressable 
as parametric functions of gi(r) and gi(r). This parametric 
dependence of/A and 1 - / c on T is an implicit mechanism for 
treating transition-state interactions, including those between the 
A and C fragments. Marcus' equation is a particularly simple, 
specific case of the general barrier expression (eq 23) for which 
g\(T) = T, g2(r) = T2, and T = AE/AAE*a. Marcus' equation is 
an example of a barrier function where AE* —- AE from above 
for a finite value of AE (AE* = AE for A£ = 4 AEf1). This feature 
has been criticized27 and has also been the object of experimental 
search.62 It should be noted that whether AE* —• AE for finite 

(58) The limits derived in ref 56 are consistent with a sigmoidal function 
with an odd number of inflection points. 

(59) Marcus has also considered sigmoidal relationships between a per-
turbational parameter and A£. See ref 43b. 

(60) This error is proportional to A^J. 
(61) This does not require that the/1 terms actually transfer, only that the 

final result is the same as if they do. 
(62) (a) V. Breyman, H. Dreeskamp, E. Koch, and M. Zander, Chem. 

Phys. Lett., 59, 68 (1978); (b) M. T. Indelli and F. Scandola, J. Am. Chem. 
Soc, 100, 7732 (1978). 
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Table V. Barriers of Cross Reactions 

AE, kcal 
AE%, kcal 
A£T ,kcal 

^ ,Marcus ., kcal 
A£*sin,a kcal 

±E* tanh.0 

a kcal 
kcal 

HeH+Ne 

-90.12 
-34.04 
-93.53 
-94.01 
-90.79 
-93.91 
-92.57 

HeH+Ar 

-71.58 
-21.54 
-72.43 
-72.19 
-71.60 
-72.10 
-71.98 

NeH+Ar 

18.53 
-40.92 
-31.55 
-32.18 
-31.67 
-31.73 
-31.69 

a e = l . 

or infinite values of AE depends on the properties of , ^ ( T ) and 
S2(T)-55 

IV. A Quantum Mechanical Test 
A convenient reaction to use as a test case involves proton 

transfer between rare gas atoms. 

He-H+ + Ne ^ He + H-Ne+ (28) 

He-H+ + Ar ^ He + H-Ar+ (29) 

Ne-H + + Ar ^ Ne + H-Ar+ (30) 

The energies of these structures as well as the intermediate 
"transition states" were calculated by using GAUSSIAN 7063 and 
PROMETHEUS x.64 Pople's 3G basis set63 was used and all ge­
ometries have been fully optimized to within 5 ^hartree of the 
estimated minimum.65 The calculated energies and geometries 
are summarized in Tables II and III.66 

In table IV, the intrinsic barriers are listed for the three identity 
reactions. Note that the barriers are negative and are not constant 
and vary due to changes in both Vand/1. In Table V the barriers 
for the three cross reactions are reported. Again, note that the 
intrinsic barriers are not constant and Marcus' equation as well 
as the three sigmoid "theories" give excellent agreement with the 
SCF MO barriers. The behavior of the arctan model is partic­
ularly striking, showing agreement with the SCF result to within 
0.4 kcal over the 108-kcal variation in AE\ 

It is also worth noting that the geometry changes are in good 
qualitative agreement with the Hughes-Ingold-Shapiro gener­
alization17 and with Johnston's proposal of bond order conservation. 
The proton shifts toward the more basic atom, and the degree of 
the shift increases with the difference67 in basicity. The geometry 
of NeH+Ar is also within 0.004-0.01 A of the hemistructural 

(63) W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. 
Pople, QCPE, 11, 236 (1973). 

(64) PROMETHEUS x is an experimental SCF MO program now under 
development at UCLA. It will be described in detail elsewhere. 

(65) This degree of optimization was carried out since the energy rela­
tionships between the structures are not particularly simple unless the struc­
tures are zero-force structures.382 The quality of these wave functions at the 
3-G level is relatively poor and is nowhere close to the HF limit with respect 
to energy. The wave functions do not satisfy either the virial or Hellmann-
Feynman theorems. However, it was found that geometry optimization is 
sufficient for the total energy to behave as if the virial theorem holds, since 
scaling to satisfy the virial theorem scarcely changes E1 and has little effect 
on the relative energy. These points are being pursued but do not materially 
affect the present conclusions. 

(66) It is also relevant to point out that the MO's for the XH+X-type 
species are sufficiently localized to make spatial correlations with the MO's 
for X and H+X. All of the XH+X MO's were found to be intermediate in 
orbital energy relative to the corresponding MO's of X and H+X. Without 
going into details, we will simply note that the average Ne-2s orbital energy 
in NeH+Ne is about -2.286 a.u. while the corresponding orbital energies in 
Ne and Ne+H are -1.706 and -2.443 a.u., respectively. The fractional change 
for the intermediate is about 0.21 and can be compared with f (0.2761) 
calculated from the proton affinity and the intrinsic barrier in Table IV. This 
feature is general for all the reactions discussed here, and it was also found 
that these orbital fs change with AE in the same qualitative fashion as 
indicated in Figure 2. A complete treatment of this phenomenon will be 
reported later. Preliminary results indicate that a similar effect is operating 
in the much more complicated system (HC=C-CH2" + H—CH2—C=N). 

(67) The total bond orders for HeHNe+, HeHAr+, and NeHAr+ are 
0.1136 + 0.8478 = 0.9614; 0.0393 + 0.9674 = 1.0067; and 0.5132 + 0.4775 
= 0.9907, respectively. Bond orders are calculated from Pauling's relationship, 
«XH = exP(~aXHAfxH) where aXH (X = He, Ne, Ar) is obtained from the 
identity complex by arbitrarily setting n = '/2. Changes in individual bond 
order (5nXH< ^«YH) compensate to a high degree, resulting in approximately 
constant total bond order (6nxli + dnYn — 0). 



3800 J. Am. Chem. Soc, Vol. 104, No. 14, 1982 Murdoch and Magnoli 

Table VI. Barriers of Cross Reactions-Proton and 
and Methyl Transfer 

AiT, kcal 

^t AE* 
1^ . Marcus 
AF* • ° " c sin 
^E arctan 
^ * t a n h a 

-58 .88 h 

41.18 
15.64 
17.00 
13.35 
15.67 
14.30 

X-CH3-Y" 

- 5 2 . 8 5 c 

33.90 
11.99 
12.62 
9.30 
11.59 
10.28 

-53 .79 d 

32.64 
9.98 
11.26 
7.87 
10.32 
8.96 

X-H-Y" 

23.36e 

-21.605 
-10.39 
-11.50 
-10.21 
-10.82 
-10.43 

a e = 1. b F-CH3-H" (Dedieu and Veillard, ref 67). The calcu­
lated potential surfaces for these reactions show stable intermedi­
ates between the transition state and the separated reactants. The 
estimates of AE, AE*, AE* are based on the intermediates using 
data from Table VI and Figures 3-6 (ref 68). e F. Keil and R. 
Ahlrichs (ref 70). SCF result using a large Gaussian basis set. 
" Same as c, except an estimate of the correlation energy is includ­
ed based on the CEPA technique. The agreement between Keil 
and Ahlrichs' SCF barriers and the barriers calculated from Marcus' 
equation and eq 24-27 is partly fortuitous since no correction has 
been made for any intermediates between the transition state and 
the isolated reactants. e [H-C=C-CH2-H-CH2-C=N]". These 
calculations are preliminary and were carried out at the 3-G level. 
The geometries of the identity transition states have been carefully 
optimized with respect to the X-H and H-Y distances and partially 
optimized with respect to C-C and C-N bond lengths and the bond 
angles around the a carbons. The structure of the transition state 
for the cross reaction was initially taken to be hemistructural, and 
then the X-H and H-Y distances were re-optimized. The resulting 
energy change was negligible. A more refined treatment will be 
presented. 

geometry, and its energy is about 0.1 kcal below the mean energy 
of ArH+Ar and NeH+Ne. This agreement is particularly in­
teresting since AE for the cross reaction is over 18 kcal and 
suggests that the hemistructural relationship38 will hold over an 
appreciable range of structure. 

Before closing, it is worthwhile pointing out an interesting result 
obtained by Dedieu and Veillard68 for the displacement of fluoride 
by hydride from methylfluoride. They calculated the barrier of 
this reaction by using a large Gaussian basis set with limited 
geometry optimization and CI. 

H - + CH3F ^ H-CH3 + F- (31) 

(68) A. Dedieu and A. Veillard, J. Am. Chem. Soc, 94, 6730 (1972). 

The hydride identity barrier is 62.75 kcal, the fluoride identity 
barrier is 19.6 kcal, and AE is -58.9 kcal. The barrier for the 
unsymmetrical cross reaction (eq 31) is 15.6 kcal and Marcus' 
equation predicts a barrier too high by 1.4 kcal, while the arctan 
equation agrees within 0.03 kcal (Table VI). Also included are 
results from two other SCF calculations for the same reaction and 
preliminary results for the proton-transfer reaction between 
H—C=C—CH2

- + H—CH2—C=N. Agreement is reasonable 
in all cases: 0.63-1.28 kcal for Marcus' equation and 0.34-0.43 
kcal for the arctan equation. 

It should be noted that, in a pioneering study, Pellerite and 
Brauman69 have recently applied Marcus' equation to gas-phase 
nucleophilic displacements and have correlated leaving group 
ability with the height of the intrinsic barrier. This work represents 
the first application of Marcus' equation to an experimental, 
gas-phase, SN-2 reaction and has, in addition to other important 
contributions, called attention to the importance of both kinetic 
and thermodynamic contributions to the barriers of SN-2 reactions. 
Notable work by Lewis71 and by Kreevoy and Albery72 on solution 
phase SN-2 reactions has also emphasized the role of kinetic and 
thermodynamic contributions. Equation 23 has also been shown 
to describe experimental gas-phase well depths of 51 proton-bound 
dimers of anions, amines, and neutral hydrides.41 Marcus' equation 
has also been used to correlate computed (4-31G) barriers to SN-2 
reactions.41'73 
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